Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Language
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.17.21260679

ABSTRACT

IntroductionWe assessed the usefulness of SARS-CoV-2 RT-PCR cycle thresholds (Ct) values trends produced by the LHUB-ULB (a consolidated microbiology laboratory located in Brussels, Belgium) for monitoring the epidemics dynamics at local and national levels and for improving forecasting models. MethodsSARS-CoV-2 RT-PCR Ct values produced from April 1, 2020, to May 15, 2021, were compared with national COVID-19 confirmed cases notifications according to their geographical and time distribution. These Ct values were evaluated against both a phase diagram predicting the number of COVID-19 patients requiring intensive care and an age-structured model estimating COVID-19 prevalence in Belgium. ResultsOver 155,811 RT-PCR performed, 12,799 were positive and 7,910 Ct values were available for analysis. The 14-day median Ct values were negatively correlated with the 14-day mean daily positive tests with a lag of 17 days. In addition, the 14-day mean daily positive tests in LHUB-ULB were strongly correlated with the 14-day mean confirmed cases in the Brussels-Capital and in Belgium with coinciding start, peak and end of the different waves of the epidemic. Ct values decreased concurrently with the forecasted phase-shifts of the diagram. Similarly, the evolution of 14-day median Ct values was negatively correlated with daily estimated prevalence for all age-classes. ConclusionWe provide preliminary evidence that trends of Ct values can help to both follow and predict the epidemics trajectory at local and national levels, underlining that consolidated microbiology laboratories can act as epidemic sensors as they gather data that are representative of the geographical area they serve.


Subject(s)
COVID-19
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.18.20248450

ABSTRACT

Using publicly available data on the number of new hospitalisations we use a newly developed phase portrait to monitor the epidemic allowing for assessing whether or not intervention measures are needed to keep hospital capacity under control. Using this phase portrait, we show that intervention measures were effective in mitigating a Summer resurgence but that too little too late was done to prevent a large autumn wave in Belgium.

3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.29.20183210

ABSTRACT

COVID-19 became pandemic in 2020 and causes higher mortality in males (M) than females (F) and among older people. In some countries, like Belgium, more than half of COVID-19 confirmed or suspected deaths occurring in spring 2020 concerned residents of care homes. The high incidence in this population is certainly linked to its peculiar age structure but could also result from its poorer general health condition and/or from a higher contamination through the staff of care homes, while protection equipment and testing capacity were initially limited. To address these issues, we used data from Wallonia (Belgium) to characterize the distribution of death rates among care home institutions, to compare the dynamics of deaths in and outside care homes, and to analyse how age and sex affected COVID-19 death rates inside and outside care homes. We also used annual death rates as a proxy for the health condition of each population. We found that: (1) COVID-19 death rate per institution varied widely from 0{per thousand} to 340{per thousand} (mean 43{per thousand}) and increased both with the size of the institution (number of beds) and with the importance of medical care provided. (2) 65% of COVID-19 deaths in Wallonia concerned residents of care homes where the outbreak started after but at a faster pace than the outbreak seen in the external population. (3) The impact of age on both annual and COVID-19 mortality closely follows exponential laws (i.e. Gompertz law) but mortality was much higher for the population living in care homes where the age effect was lower (mortality rate doubling every 20 years of age increment in care homes, 6 years outside them). (4) Both within and outside care homes, the ratio of M/F death rates was 1.6 for annual mortality but reached 2.0 for COVID-19 mortality, a ratio consistent among both confirmed and suspected COVID-19 deaths. (5) When reported to the annual death rate per sex and age, the COVID-19 relative mortality was little affected by age and reached 24% (M) and 18% (F) of their respective annual rate in nursing homes, while these percentages reduced to 10% (M) and 9% (F) in homes for elderly people (with less medical assistance), and to 5% (M) and 4% (F) outside of care homes. In conclusion, a c. 130x higher COVID-19 mortality rate found in care homes compared to the outside population can be attributed to the near multiplicative combination of: (1) a 11x higher mortality due to the old age of its residents, (2) a 3.8x higher mortality due to the low average health condition of its residents, and (3) probably a 3.5x higher infection rate (1.6x in homes for elderly people) due to the transmission by its staff, a problem more acute in large institutions. Our results highlight that nursing home residents should be treated as a very specific population, both for epidemiological studies and to take preventive measures, due to their extreme vulnerability to COVID-19.


Subject(s)
COVID-19 , Death
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.05.078758

ABSTRACT

Since the start of the COVID-19 pandemic, an unprecedented number of genomic sequences of the causative virus (SARS-CoV-2) have been generated and shared with the scientific community. The unparalleled volume of available genetic data presents a unique opportunity to gain real-time insights into the virus transmission during the pandemic, but also a daunting computational hurdle if analysed with gold-standard phylogeographic approaches. We here describe and apply an analytical pipeline that is a compromise between fast and rigorous analytical steps. As a proof of concept, we focus on the Belgium epidemic, with one of the highest spatial density of available SARS-CoV-2 genomes. At the global scale, our analyses confirm the importance of external introduction events in establishing multiple transmission chains in the country. At the country scale, our spatially-explicit phylogeographic analyses highlight that the national lockdown had a relatively low impact on both the lineage dispersal velocity and the long-distance dispersal events within Belgium. Our pipeline has the potential to be quickly applied to other countries or regions, with key benefits in complementing epidemiological analyses in assessing the impact of intervention measures or their progressive easement.


Subject(s)
COVID-19
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.02.05.20020792

ABSTRACT

The novel coronavirus (2019-nCoV) epidemic has spread to 23 countries from China. Local cycles of transmission already occurred in 7 countries following case importation. No African country has reported cases yet. The management and control of 2019-nCoV introductions heavily relies on the public health capacity of a country. Here we evaluate the preparedness and vulnerability of African countries against their risk of importation of 2019-nCoV. We used data on air travel volumes departing from airports in the infected provinces in China and directed to Africa to estimate the risk of introduction per country. We determined the countries capacity to detect and respond to cases with two indicators: preparedness, using the WHO International Health Regulation Monitoring and Evaluation Framework; and vulnerability, with the Infectious Disease Vulnerability Index. Countries were clustered according to the Chinese regions contributing the most to their risk. Findings: Countries at the highest importation risk (Egypt, Algeria, Republic of South Africa) have moderate to high capacity to respond to outbreaks. Countries at moderate risk (Nigeria, Ethiopia, Sudan, Angola, Tanzania, Ghana, Kenya) have variable capacity and high vulnerability. Three clusters of countries are identified that share the same exposure to the risk originating from the provinces of Guangdong, Fujian, and Beijing, respectively. Interpretation: Several countries in Africa are stepping up their preparedness to detect and cope with 2019-nCoV importations. Resources and intensified surveillance and capacity capacity should be urgently prioritized towards countries at moderate risk that may be ill-prepared to face the importation and to limit onward transmission.

SELECTION OF CITATIONS
SEARCH DETAIL